细胞活体机器人与人工智能结合或将制造真正“活机器人”!( 四 )


毕竟,多细胞生命的生存方式所需的大部分基因和能力,甚至都存在于单细胞祖先物种,当时它们已拥有彼此发送信号的能力,从而实现合作行为,粘在一起,并分化成不同的细胞类型 。目前,我们能在单细胞变形虫身体上看到这种能力,例如:网柄菌(Dictyostelium discoideum)黏液,当它们承受压力时就能组装成多细胞体 。
特里洛和同事认为,这种多细胞行为所需的遗传资源主要来自于基因调节机制——开启和关闭它们,而不是来自基因自身的任何创新 。他们指出,在向多细胞生物过渡的过程中,基因内容上的很多创新都植根于对现有基因家族的“修修补补” 。研究人员通过对Capsaspora owczarzaki变形虫的研究获得该结论,这种变形虫是进化方式较接近早期多细胞的近亲物种之一,它比其他任何单细胞生物都有更多的基因参与调控功能,大部分编码蛋白质称为转录因子 。特里洛发现,这些蛋白质在Capsaspora owczarzaki中控制的生物分子相互作用网络也经常存在于动物体内,换句话说,在真正的多细胞兴起之前,这些蛋白质网络已“准备就绪” 。
从某种意义上讲,肿瘤代表了我们自身细胞的另一种形态 。
从某种意义上讲,人体持续接近单细胞和多细胞生活方式的边界可能被视为我们人类(以及几乎所有后生动物)易患癌症的原因,在该情况下,人体细胞似乎已放弃了多细胞生活所需的限制,而回到了单细胞增殖过剩的状态 。特里洛说:“很可能成为多细胞生物较重要的问题是‘欺骗’一些细胞自己做出决定,很多对多细胞生物至关重要的动物基因都与癌症有关,也许是多细胞生物与祖先物种的生活方式相悖,需要持续的努力才能维持下来 。”
该观点的另一面是,即使是单细胞生物也容易变成***生物,即使癌细胞不专注于自我***,它们也绝不会无视周围细胞 。许多癌细胞看起来不太像未分化、大量疯狂增殖的细胞,而更像是一种紊乱的器官生长,癌细胞也可以分化和特化,就像遵循某种新的疯狂轨迹一样 。肿瘤绝不会无视周围宿主组织的生长,它们会与这些组织结合在一起,甚至利用它们来达到自己的目的 。在某些方面,癌细胞代表了我们自身细胞的另一种形态 。
随着多细胞生命变得更加复杂,生物通过基因应用而不是基因自身的创新进化模式仍在继续,法国生物学家米歇尔·莫朗奇(Michel Morange)说:“在进化过程中观察到的主要变化更多是基因调控网络重组的结果,而不是形成这些网络的蛋白质链接的改变 。”2011年,发育生物学家克雷格·洛(Craig Lowe)、大卫·豪斯勒(David Haussler)和他们的同事调查了自6.5亿年前脊椎动物首次出现以来,它们的进化过程中涉及哪些调控变化,他们比较了各种脊椎动物的基因组——人类、奶牛、老鼠和两种鱼类(棘鱼和青锵鱼),观察它们共享哪些基因序列,以及它们共同祖先可能拥有哪些基因序列 。
研究人员考虑了在这种系统发生比较中通常不会检测到的部分序列——“非外显性元素(CNEEs)”,它位于编码蛋白质序列之外 。非外显性序列通常被认为是偶然积累的随机基因组垃圾,但克雷格和同事推断称,如果发现一些非外显性元素处于高度保守状态——即在不同物种反映出现或多或少不发生变化,那么它们可能在细胞中发挥一些功能作用 。这意味着它们面临着选择压力,而同时选择压力会保护它们,而随机基因组垃圾会迅速退化,并在不同物种之是按顺序分化 。研究人员认为,这种保守的“非外显性元素”可能参与调控基因的活动 。
在大约5.4亿年前寒武纪大爆发中,各种各样的动物体型出现了!