4、培养学生大胆猜想、合理论证的科学精神 。教学重点:探索并运用三角形中位线的性质 。
教学难点:
运用转化思想解决有关问题 。教学方法:创设情境——建立数学模型——应用——拓展提高教学过程:情境创设:测量不可达两点距离 。
探索活动:
活动一:剪纸拼图 。操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形 。观察、猜想: 四边形BCFD是什么四边形 。探索: 如何说明四边形BCFD是平行四边形?
活动二:探索三角形中位线的性质 。应用练习及解决情境问题 。
例题教学
操作——猜想——验证
拓展:数学实验室
小结:作业: P134 /习题3.6 1、3
7. 教师资格考试中初中数学教案怎么写 教师资格考试中初中数学教案需要按照以下格式来写: 课题(说明本课名称)教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)课型(说明属新授课,还是复习课)课时(说明属第几课时)教学重点(说明本课所必须解决的关键性问题)教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)教学方法(要根据学生实际,注重引导自学,注重启发思维)教学过程(或称课堂结构,说明教学进行的内容、方法步骤)作业处理(说明如何布置书面或口头作业)板书设计(说明上课时准备写在黑板上的内容)教具(或称教具准备,说明辅助教学手段使用的工具)教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)扩展资料:教案中对每个课题或每个课时的教学内容,教学步骤的安排,教学方法的选择,板书设计,教具或现代化教学手段的应用,各个教学步骤教学环节的时间分配等等,都要经过周密考虑,精心设计而确定下来,体现着很强的计划性 。
编写教案要依据教学大纲和教科书 。从学生实际情况出发,精心设计 。
一般要符合以下要求:明确地制订教学目的,具体规定传授基础知识、培养基本技能﹑发展能力以及思想政治教育的任务,合理地组织教材,突出重点,解决难点,便于学生理解并掌握系统的知识 。恰当地选择和运用教学方法,调动学生学习的积极性,面向大多数学生,同时注意培养优秀生和提高后进生,使全体学生都得到发展 。
参考资料:百度百科-教案 。
8. 教师资格证面试:初中数学教案怎么写 三角形全等的判定(SSS)一、教学内容本节课主要内容是探索三角形全等的条件(SSS),及利用全等三角形进行证明.二、教学目标(一)知识与技能了解三角形的稳定性,会应用“边边边”判定两个三角形全等.(二)过程与方法经历探索“边边边”判定全等三角形的过程,解决简单的问题.(三)情感、态度与价值观培养有条理的思考和表达能力,形成良好的合作意识.三、重、难点与关键(一)重点:掌握“边边边”判定两个三角形全等的方法.(二)难点:理解证明的基本过程,学会综合分析法.(三)关键:掌握图形特征,寻找适合条件的两个三角形.四、教具准备一块形状如图1所示的硬纸片,直尺,圆规.五、教学方法采用“操作──实验”的教学方法,让学生亲自动手,形成直观形象.六、教学过程(一)设疑求解,操作感知【教师活动】(出示教具)问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,你对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流.【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,剪下模板就可去割玻璃了.【理论认知】如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.反之,如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′.这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:只要两个三角形三条对应边相等,就可以保证这两块三角形全等.信不信?【作图验证】(用直尺和圆规)先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗)【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示)画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC:1.画线段取B′C′=BC;2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′;3.连接线段A′B′、A′C′.【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?”【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理.(1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”).(2)判断两个三角形全等的推理过程,叫做证明三角形全等.【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验.(二)范例点击,应用所学【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.(教师板书)【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等.证明:∵D是BC的中点,∴BD=CD在△ABD和△ACD中∴△ABD≌△ACD(SSS).【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写.(三)实践应用,合作学习【问题思考】已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法.【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.”【教学形式】先独立思考,再合作交流,师生互动.(四)随堂练习,巩固深化课本P8练习.【探研时空】如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗?你能找到一对全等三角形吗?说明你的理由.(BC=EF,△ABC≌△DFE)(五)课堂总结,发展潜能1.全等三角形性质是什么?2.正确地判断出全等三角形的对应边、对应角,利用全等三角形处理问题的基础,你是怎样掌握判断对应边、对应角的方法?3.“边边边”判定法告诉我们什么呢?(答:只要一个三角形三边长度确定了,则这个三角形的形状大小就完全确定了,这就是三角形的稳定性)(六)布置作业,专题1.课本P15习题11.2第1,2题.2.选用课时作业设计.(七)板书设计把黑板平均分成三份,左边部分板书“边边边”判定法,中间部分板书例题,右边部分板书练习.(八)疑难解析证明中的每一步推理都要有根据,不能“想当然”,这些根据,可以是已知条件,也可以是定义、公理、已学过的重要结论 。
- 学生调查记录怎么写
- 购买材料的分录怎么写
- 税日语怎么写
- 谓草书怎么写
- 泳装英文怎么写的
- 具的田字格怎么写
- 淡绿英文怎么写
- 姐的大写怎么写
- 枳实白术怎么吃 枳实白术汤案例
- 一到晚上就浑身痒痒咋回事 一到晚上就浑身痒痒是怎么回事