函数的单调区间怎么写( 三 )


扩展资料
性质
若函数y=f(x)在某个区间是增函数或减函数 , 则就说函数在这一区间具有(严格的)单调性 , 这一区间叫做函数的单调区间 。此时也说函数是这一区间上的单调函数 。
注:在单调性中有如下性质 。图例:↑(增函数)↓(减函数)
↑+↑=↑ 两个增函数之和仍为增函数
↑-↓=↑ 增函数减去减函数为增函数
↓+↓=↓ 两个减函数之和仍为减函数
↓-↑=↓ 减函数减去增函数为减函数
一般地 , 设函数f(x)的定义域为I:
如果对于属于I内某个区间上的任意两个自变量的值x1、x2 , 当x1<x2时都有f(x1)<f(x2) 。那么就说f(x)在这个区间上是增函数 。
相反地 , 如果对于属于I内某个区间上的任意两个自变量的值x1、x2 , 当x1<x2时都有f(x1)>f(x2) , 那么f(x)在这个区间上是减函数 。
4.怎样确定一个函数的单调区间(1)定义法:根据增函数 , 减函数的定义按照“取值—做差—变形—判断符号—下结论”进行判断
(2)图像法:就是画出函数的图像 , 根据图像的上升或下降 , 判断函数的单调性
(2)直接法:就是对于我们所熟悉的函数如一次函数 , 二次函数 , 反比例函数等 直接写出他们的单调区间
下面给你做个解题的示范吧 已知f(x)=-3x+1 求他在R上的单调性
解:设x1,x2∈R 且x1
f:(x1)-f(x2)=(-3x2+1)-(-3x1+1)
=3(x1-x2)
∵x1
f(x2)
∴该函数在R上为减函数
好了 , 这就是最通行的确定单调性和区间地方法
5.求一个函数的单调区间,,写出详细过程,我只要详细过程先化成关于cosx的二次函数 , 然后根据三角函数单调区间和值域确定复合函数的单调区间
【函数的单调区间怎么写】设cosx=t
f(x)=t^2-(1+t)=t^2-t-1=(t-1/2)^2 -5/4
当t<1/2的时候递减 , 当t>1/2的时候递增
也就是说 , 在一个周期内
当cosx<1/2的时候递减 , 当cosx>1/2的时候递增
π/3<x<5π/3的时候递减 , -π/3<x<;π/3的时候递增
考虑到cosx自身单调性 , 在一个周期内
0<x<;π/3的时候递减 , π/3<x<;π的时候递增
π<x<5π/3的时候递减 , 5π/3<x<2π的时候递增
考虑到周期2π , 
2kπ<x<2kπ+π/3的时候递减 , 2kπ+π/3<x<2kπ+π的时候递增
2kπ+π<x<2kπ+5π/3的时候递减 , 2kπ+5π/3<x<2kπ+2π的时候递增
k∈Z
6.怎么求解函数的单调区间定义法:就是设x1 x2然后相减 。
复合法:用来求复合函数的单调性 , 就是那个同增异减的 导数法:求出原函数的导数 , 若导数>0 , 则是增 , 反之则减 函数的单调性是研究当自变量x不断增大时 , 它的函数y增大还是减小的性质.如函数单调增表现为“随着x增大 , y也增大”这一特征.与函数的奇偶性不同 , 函数的奇偶性是研究x成为相反数时 , y是否也成为相反数 , 即函数的对称性质. 函数的单调性与函数的极值类似 , 是函数的局部性质 , 在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同 , 它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义 , 体现了对函数研究的一般方法.这就是 , 加强“数”与“形”的结合 , 由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳 , 发现函数的增、减变化的直观特征 , 进一步量化 , 发现增、减变化数字特征 , 从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据 , 在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见 , 不论在函数内部还是在外部 , 函数的单调性都有重要应用 , 因而在数学中具有核心地位. 教学的重点是 , 引导学生对函数在区间(a,b)上“随着x增大 , y也增大(或减小)”这一特征进行抽象的符号描述:在区间(a,b)上任意取x1,x2 , 当x1f(x1)(或f(x2) 二.目标和目标解析 本节课要求学生理解函数在某区间上单调的意义 , 掌握用函数单调性的定义证明简单函数在某区间上具有某种单调性的方法(步骤).1.能够以具体的例子说明某函数在某区间上是增函数还是减函数;2.能够举例 , 并通过绘制图形说明函数在定义域的子集(区间)上具有单调性 , 而在整个定义域上未必具有单调性 , 说明函数的单调性是函数的局部性质;3.对于一个具体的函数 , 能够用单调性的定义 , 证明它是增函数还是减函数:在区间上任意取x1,x2 , 设x1 三.教学问题诊断分析 学生已有的认知基础是 , 初中学习过函数的概念 , 初步认识到函数是一个刻画某些运动变化数量关系的数学概念;进入高中以后 , 又进一步学习了函数的概念 , 认识到函数是两个数集之间的一种对应.学生还了解函数有三种表示方法 , 特别是可以借助图象对函数特征加以直观考察.此外 , 还学习过一次函数、二次函数、反比例函数等几个简单而具体的函数 , 了解它们的图象及性质.尤其值得注意的是 , 学生有利用函数性质进行两个数大小比较的经验. “图象是上升的 , 函数是单调增的;图象是下降的 , 函数是单调减的”仅就图象角度直观描述函数单调性的特征学生并不感到困难.困难在于 , 把具体的、直观形象的函数单调性的特征抽象出来 , 用数学的符号语言描述.即把某区间上“随着x的增大 , y也增大”(单调增)这一特征用该区间上“任意的x1 教学中 , 通过一次函数、二次函数等具体函数的图象及数值变化特征的研究 , 得到“图象是上升的” , 相应地 , 即“随着x的增大 , y也增大” , 初步提出单调增的说法.通过讨论、交流 , 让学生尝试 , 就一般情况进行刻画 , 提出“在某区间上 , 如果对于任意的x1 企图在一节课中完成学生对函数单调性的真正理解可能是不现实的.在今后 , 学生通过判断函数的单调性 , 寻找函数的单调区间 , 运用函数的单调性解决具体问题 , 等一系列学习活动可以逐步理解这个概念. 四.教学支持条件分析 为了有效实现教学目标 , 条件许可 , 可以借助计算机或者计算器绘制函数图象 , 同时辅以坐标计算、跟踪点以及等手段观察函数的数字变化特征. 五.教学过程设计1.认识研究函数单调性的必要性 前面已经学习过函数的概念、函数表示法 , 紧接着对函数要研究些什么?那就是函数的性质(特征).研究函数的性质 , 是为了更好地把握变化规律. 对于运动变化问题 , 最基本的就是描述变化的快或慢、增或减……相应的 , 函数的特征就包含:函数的增与减(单调性) , 函数的最大值、最小值 , 等.使学生感受到 , 紧接研究函数的性质是必然的学习任务.也可以由教师引导 , 借助对一些函数图象的观察、对所观察到的特征进行归类 , 引入函数的某个性质的研究.比如 , 观察图1中各个函数的图象 , 你能说说它们分别反映了相应函数的哪些变化特征?有图象上升的特征 , 图象有时上升有时下降的特征 , 图象关于y轴对称的特征 , 等.我们将逐一研究这些特征.2.函数单调性的认识 问题串的设计大体从两个层次上展开 , 目的是经历从直观到抽象 , 从特殊到一般的过程. 首先利用图象描述变化规律 , 如上升、下降 , 从几何直观角度认识函数单调性;然后从数值变化角度描述变化规律 , 图象上升(下降) , 也就是随着x的增大y也增大(或减小);最后用数学符号语言描述. 问题1 如图2 , 观察一次函数f(x)=x和二次函数f(x)=x2的图象 , 说说随着x的增大 , 图象的升降情况. 函数f(x)=x的图象由左到右是上升的;函数f(x)=x2的图象在y轴左侧是下降的 , 在y轴右侧是上升的. 意图:通过几何直观 , 引导学生关注图象所反映出的特征 , 体验自变量从小到大变化时 , 函数值大小变化在图象上的表现. 初步提出函数单 。