vcr方程怎么写( 三 )


E=φ(+)-φ(-)=[φ(标准,+)-φ(标准,-)]-(0.0592/2)lg([Zn2+]/[Cu2+]) ={φ(标准,+)+(0.0592/2)lg[Cu2+]}-{φ(标准,-)+(0.0592/2)lg[Zn2+]}
所以φ(+)=φ(标准,+)+(0.0592/2)lg[Cu2+] φ(-)=φ(标准,-)+(0.0592/2)lg[Zn2+]
归纳成一般的通式: φ=φ(标准)+(0.0592/n)lg([氧化型]/[还原型])……………………(4) 式中n——电极反应中电子转移数 。[氧化型]/[还原型]——表示参与电极反应所有物质浓度的乘积与反应产物浓度乘积之比 。而且浓度的方次应等于他们在电极反应中的系数 。纯固体、纯液体的浓度为常数,作1处理 。离子浓度单位用mol/L(严格地应该用活度) 。气体用分压表示 。
方程应用
一、离子浓度改变时电极电势的变化 根据能斯特方程可以求出离子浓度改变时电极电势变化的数值
二、离子浓度改变对氧化还原反应方向的影响 非标准状态下对于两个电势比较接近的电对,仅用标准电势来判断反应方向是不够的,应该考虑离子浓度改变对反应方向的影响 。
三、介质酸度对氧化还原反应的影响及pH电势图
6.伯努利方程怎么写伯努利方程
科技名词
中文名称:伯努利方程 英文名称:Bernoulli's equation
定义:反映理想流体运动中速度、压强等参数之间关系的方程式 。
应用学科:航空科技(一级学科);飞行原理(二级学科) 以上内容由全国科学技术名词审定委员会审定公布
求助编辑百科名片
伯努利方程是理想流体定常流动的动力学方程,意为流体在忽略粘性损失的流动中,流线上任意两点的压力势能、动能与位势能之和保持不变 。
目录
流体力学中的物理方程
举例
编辑本段流体力学中的物理方程
理想正压流体在有势体积力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程 。因著名的瑞士科学家D.伯努利于1738年提出而得名 。对于重力场中的不可压缩均质流体,方程为p+ρgh+(1/2)*ρv^2=c 式中p、ρ、v分别为流体的压强、密度和速度;h为铅垂高度;g为重力加速度;c为常量 。
上式各项分别表示单位体积流体的压力能 p、重力势能ρgh和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒 。但各流线之间总能量(即上式中的常量值)可能不同 。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压 、动压和总压 。显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压) 。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上 。据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理 。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间 。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1] 。图为验证伯努利方程的空气动力实验 。补充:p1+1/2ρv1^2+ρgh1=p2+1/2ρv2^2+ρgh2(1)
p+ρgh+(1/2)*ρv^2=常量 (2)
均为伯努利方程 其中ρv^2/2项与流速有关,称为动压强,而p和ρgh称为静压强 。伯努利方程揭示流体在重力场中流动时的能量守恒 。由伯努利方程可以看出,流速高处压力低,流速低处压力高 。
编辑本段举例
图II.4-3为一喷油器,已知进口和出口直径D1=8mm,喉部直径D2=7.4mm,进口空气压力p1=0.5MPa,进口空气温度T1=300K,通过喷油器的空气流量qa=500L/min(ANR),油杯内油的密度ρ=800kg/m 。问油杯内油面比喉部低多少就不能将油吸入管内进行喷油? 解: 由气体状态方程,知进口空气密度ρ=(p1+Patm)/(RT1)=(0.5+0.1)/(287*300)kg/m=6.97kg/m 求通过喷油器的质量流量 qm=ρa*qa=(1.185*500*10^-3)/60=0.009875kg/s 求截面积1和截面积2处的平均流速: u1=qm/(ρ1A1)=[0.009875/(6.97*0.785*0.008^2)]m/s=28.2m/s u2=qm/(ρ2A2)=[0.009875/(6.97*0.785*0.0074)]m/s=32.9m/s 由伯努利方程可得 p1-p2=0.5*ρ1(u2^2-u1^2)=0.5*6.97(32.9^2-28.2^2)pa=1200.94pa 吸油管内为静止油液,若能吸入喉部,必须满足: p1-p2≥ρgh h≤(p1-p2)/ρg=1200.94/(800*9.8)m=0.153m 故 说明油杯内油面比喉部低153mm以上便不能喷油 。