数的发展 数的发展史( 二 )


16、它要求在其解中运用虚数.一个这样的方程就是x2=-1.设计一个普遍性的集合,把所有的数都联系在一起,这样就引进了复数 。
17、它出现在像一元二次方程x2+2x+2=0这类方程的解中.复数(形如a上面提到的数,都可以看成复数的一种类别.例如,实数是虚部为0的复数 。
18、而纯虚数则是实部为0但虚部不为0的复数.用几何进行描述时,虚数和复数变得更为具体.像古希腊人在数轴上描述实数一样,复数可以用复平面来描述.每个复平面上的点都对应着一个且只有一个复数 。
19、反之亦然.这样,方程x5=1的五个解就能用图解表示出来.由于复数可由二维的点描述,这似乎就有一个逻辑上的过渡问题 。
20、即问一问什么样的数可以描述高维空间上的点.我们发现了一种叫四元数的数,可以用来描述四维空间.现在留下的问题是——数到此为止了吗?我们说,随着新的数学思想的发展和应用 。
21、还会经常产生新数的! 。
【数的发展 数的发展史】本文到此分享完毕,希望对大家有所帮助 。