sincos相乘等于多少

sincos相乘等于多少
sin、cos相乘等于二分之一sin(2X) 。sinx函数即正弦函数,cos函数是余弦函数,都是三角函数的一种,sin(a)×cos(a)=1/2sin2a是三角函数中的固定公式 。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制 , 下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数 。也可以等价地用与单位圆有关的各种线段的长度来定义 。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具 。

sincos相乘等于多少

文章插图
sincos相乘等于多少sinβcosβ=sin2β/2
这是2倍角公式的逆用
sincos相乘公式公式一:
设α为任意角,终边相同的角的同一三角函数的值相等
k是整数sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sec(2kπ+α)=secα
csc(2kπ+α)=cscα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
公式三:
任意角α与 -α的三角函数值之间的关系sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sec(-α)=secα
csc(-α)=-cscα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sec(π-α)=-secα
csc(π-α)=cscα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
【sincos相乘等于多少】cot(2π-α)=-cotα
sec(2π-α)=secα
csc(2π-α)=-cscα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
扩展资料:
对于边长为a,b和c而相应角为A,B和C的三角形,有:sinA / a = sinB / b = sinC/c
也可表示为:a/sinA=b/sinB=c/sinC=2R
变形:a=2RsinA,b=2RsinB,c=2RsinC
其中R是三角形的外接圆半径 。
它可以通过把三角形分为两个直角三角形并使用上述正弦的定义来证明 。在这个定理中出现的公共数 (sinA)/a是通过A,B和C三点的圆的直径的倒数