数学案例评析怎么写( 四 )


教师在此设置问题不仅是检验勾股定理的灵活运用,更是对勾股定理探究方法和证明思想(数形结合思想、面积割补的方法、转化和化归思想)的综合运用,从而让学生在解决问题中发展创新能力 。第四个环节:挖掘勾股定理文化价值 师:勾股定理揭示了直角三角形三边之间的数量关系,见数与形密切联系起来 。
它在培养学生数学计算、数学猜想、数学推断、数学论证和运用数学思想方法解决实际问题中都具有独特的作用 。勾股定理最早记载于公元前十一世纪我国古代的《周髀算经》,在我国古籍《九章算术》中提出“出入相补”原理证明勾股定理 。
在西方勾股定理又被成为“毕达哥拉斯定理”,是欧式几何的核心定理之一,是平面几何的重要基础,关于勾股定理的证明,吸引了古今中外众多数学家、物理学家、艺术家,甚至美国总统也投入到勾股定理的证明中来 。它的发现、证明和应用都蕴涵着丰富的数学人文内涵,希望同学们课后查阅相关资料,了解数学发展的历史和数学家的故事,感受数学的价值和数学精神,欣赏数学的美 。
新课程三维目标(知识和技能、过程和方法、情感态度和价值观)从三个维度构建起具有丰富内涵的目标体系,课程运行中的每一个目标都可以与三个维度发生联系,都应该在这三个维度上获得教育价值 。2.课堂教学过程中的预设和生成的动态调整 案例2:年前,在鲁教版七年级数学上册《配套练习册》第70页,遇到一道填空题: 例:设a、b、c分别表示三种质量不同的物体,如图所示,图①、图②两架天平处于平衡状态 。
为了使第三架天平(图③)也处于平衡状态,则“?”处应放 个物体b? a a b c 图① 图② a c ? 图③ 通过调查,这个问题只有极少数学生填上了答案,还不知道是不是真的会解,我需要讲解一下 。我讲解的设计思路是这样的: 一.引导将图①和图②中的平衡状态,用数学式子(符号语言——数学语言)表示(现实问题数学化——数学建模): 图①:2a=c+b. 图②: a+b=c. 因此,2a=(a+b)+b. 可得:a=2b, c=3b . 所以,a+c = 5b. 答案应填5. 我自以为思维严密,有根有据 。
然而,在让学生展示自己的想法时,却出乎我的意料 。学生1这样思考的: 假设b=1,a=2,c=3.所以,a+c = 5,答案应填5. 学生这是用特殊值法解决问题的,虽然特殊值法也是一种数学方法,但是存在很大的不确定性,不能让学生仅停留在这种浅显的思维表层上 。
面对这个教学推进过程的教学“新起点”,我必须深化学生的思维,但是,还不能打击他的自信心,必须保护好学生的思维成果 。因此,我立刻放弃了准备好的讲解方案,以学生思维的结果为起点,进行调整 。
我先对学生1的方法进行积极地点评,肯定了这种思维方式在探索问题中的积极作用,当那几个同样做法的学生自信心溢于言表时,我随后提出这样一个问题:。
4.小学数学教学案例及评价小学数学教学案例 一、小学数学教学案例的内涵 一个案例是一个实际情境的描述,在这个情境中,包含一个或多处疑难问题,同时也可能包含解决这些问题的方法 。
教学案例描述的是教学实践,它以丰富的叙述形式,向人们展示了一些包含有教师和学生的典型行为、思想、感情在内的故事 。小学数学教学案例应该描述小学数学课堂教学情境中教师与学生典型的、生动的交往状态与外在行为,刻画他们丰富的、细腻的精神状态和内心世界 。
二、小学数学教学案例的特征 1、素材真实性 案例所反映的应该是一个真实事件,即案例描述的是真人、真事、真情、真知,要能激发起大家的思考 。2、选材典型性 小学数学教学案例叙述的是一个数学教学的典型事例,这个事例要有一个从开始到结束的完整情节,并包括一些戏剧性的冲突,这些冲突主要集中在数学教师与学生、学生与学生的数学思维上的冲突 。