1.抽屉原理意思怎么写抽屉原理的一般含义为:“如果每个抽屉代表一个集合 , 每一个苹果就可以代表一个元素 , 假如有n+1或多于n+1个元素放到n个集合中去 , 其中必定至少有一个集合里至少有两个元素 。”
抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼 , 养鸽人养了6只鸽子 , 那么当鸽子飞回笼中后 , 至少有一个笼子中装有2只鸽子”) 。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题 , 因此 , 也称为狄利克雷原理 。它是组合数学中一个重要的原理 。
例:六年级有100名学生 , 他们都订阅甲、乙、丙三种杂志中的一种、二种或三种 。问:至少有多少名学生订阅的杂志种类相同?
分析与解:首先应当弄清订阅杂志的种类共有多少种不同的情况 。
订一种杂志有:订甲、订乙、订丙3种情况;
订二种杂志有:订甲乙、订乙丙、订丙甲3种情况;
订三种杂志有:订甲乙丙1种情况 。
【抽屉拼音怎么写】总共有3+3+1=7(种)订阅方法 。我们将这7种订法看成是7个“抽屉” , 把100名学生看作100件物品 。因为100=14*7+2 。根据抽屉原理2 , 至少有14+1=15(人)所订阅的报刊种类是相同的 。
抽屉原理常见形式:
原理1 把多于n个的物体放到n个抽屉里 , 则至少有一个抽屉里有2个或2个以上的物体 。
[证明](反证法):如果每个抽屉至多只能放进一个物体 , 那么物体的总数至多是n , 而不是题设的n+k(k≥1) , 这不可能.
原理2 把多于mn(m乘以n)个的物体放到n个抽屉里 , 则至少有一个抽屉里有m+1个或多于m+1个的物体 。
[证明](反证法):若每个抽屉至多放进m个物体 , 那么n个抽屉至多放进mn个物体 , 与题设不符 , 故不可能.
原理1 2都是第一抽屉原理的表述
第二抽屉原理:
把(mn-1)个物体放入n个抽屉中 , 其中必有一个抽屉中至多有(m—1)个物体 。
[证明](反证法):若每个抽屉都有不少于m个物体 , 则总共至少有mn个物体 , 与题设矛盾 , 故不可能
二.应用7a686964616fe58685e5aeb931333335316539抽屉原理解题
抽屉原理的内容简明朴素 , 易于接受 , 它在数学问题中有重要的作用 。许多有关存在性的证明都可用它来解决 。
例1:400人中至少有两个人的生日相同.
解:将一年中的366天视为366个抽屉 , 400个人看作400个物体 , 由抽屉原理1可以得知:至少有两人的生日相同.
又如:我们从街上随便找来13人 , 就可断定他们中至少有两个人属相相同.
“从任意5双手套中任取6只 , 其中至少有2只恰为一双手套 。”
“从数1,2, 。,10中任取6个数 , 其中至少有2个数为奇偶性不同 。”
例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具 , 每个小朋友任意选择两件 , 那么不管怎样挑选 , 在任意七个小朋友中总有两个彼此选的玩具都相同 , 试说明道理.
解 :从三种玩具中挑选两件 , 搭配方式只能是下面六种:(兔、兔) , (兔、熊猫) , (兔、长颈鹿) , (熊猫、熊猫) , (熊猫、长颈鹿) , (长颈鹿、长颈鹿) 。把每种搭配方式看作一个抽屉 , 把7个小朋友看作物体 , 那么根据原理1 , 至少有两个物体要放进同一个抽屉里 , 也就是说 , 至少两人挑选玩具采用同一搭配方式 , 选的玩具相同.
- 做题的题怎么写
- 生日快的英文怎么写
- 牡丹江师范学院教务网 牡丹江师范学院教务网怎么进
- 自来水证明怎么写
- 折叠的拼音怎么写
- 宇宙拼音怎么写
- 解药的英文怎么写
- 暂时的拼音怎么写的
- 卖房定金收据怎么写
- 父亲节快乐英语怎么写