什么是变异系数,有何优势?变异系数:当需要比较两组数据离散程度大小的时候,如果两组数据的测量尺度相差太大 , 或者数据量纲的不同,直接使用标准差来进行比较不合适,此时就应当消除测量尺度和量纲的影响,而变异系数可以做到这一点,它是原始数据标准差与原始数据平均数的比 。
优势:变异系数的好处是不需要参照数据的平均值 。变异系数是一个无量纲量,因此在比较两组量纲不同或均值不同的数据时,应该用变异系数而不是标准差来作为比较的参考 。
文章插图
扩展资料:
一般来说 , 变量值平均水平高 , 其离散程度的测度值越大,反之越小 。
变异系数的计算公式为:变异系数 C·V =( 标准偏差 SD / 平均值Mean )× 100%
在进行数据统计分析时,如果变异系数大于15%,则要考虑该数据可能不正常,应该剔除 。
变异系数在概率论的许多分支中都有应用,比如说在更新理论、排队理论和可靠性理论中 。在这些理论中,指数分布通常比正态分布更为常见 。
由于指数分布的标准差等于其平均值,所以它的变异系数等于一 。变异系数小于一的分布,比如爱尔朗分布称为低差别的,而变异系数大于一的分布,如超指数分布则被称为高差别的 。
参考资料来源:百度百科——变异系数变异系数法求权系数?德尔菲法需要计算的数据
专家参与调查的积极程度:回收率
专家的代表性
Ca对条目的判断依据按常规分为理论依据、实践经验、国内外资料、直觉四类,影响程度为大中?。?分别赋值。
Cs表示专家对条目的熟悉程度 , 分为五个等级,用12345赋值,Cr权威系数大于等于0.7 为可接受的系数 专家的权威程度Cr=(Cs+Ca)/2
专家的一致性判断 Kendall’s W 系数计算 P越大,协调度越高 。0~1
三轮的一致性系数,统计检验的p
一致性系数一般在0.742 .883左右已经很高
异变系数法筛选结果
在条目中筛选异变系数介于最小值与最大值之间的条目为评价条目 =柯西j除以 Mj
Vj——指标评价的变异系数 柯西 j指标的标准差
协调系数 W
协调系数显著性检验 自由度
重要性转换均数
备选条目的评价和筛选
结合该条目的权威系数,对原始赋值新型转换 , 计算条目的重要性转换值,并以所有回表专家对于某一条目的重要性的评分的转换值的均数来反映该条目的重要性程度,据此进行条目的筛选
某指标的平均值
Mj=1/mj· m西格玛i=1 Cij J——指标的算术平均值 mj ——参加j指标的专家数 Cij—— i专家对j指标的评价值
算术平均值越大,指标的相对重要性越高
加权平均值
Mj’ 以Cr为权数 , 对每一指标评价算术平均值,进行加权处理获得
德尔菲法中的专家协调系数计算方法??客观赋权法主要有变异系数法、熵值法和多元统计分析法,其原始数据来自评估矩阵的数据 。它的基本原理是利用指标的观测值进行赋权,权重的确定完全由统计数据得出 。这类方法切断了权重系数的主观性来源,使系数具有绝对的客观性,但却容易出现 “重要指标的权重系数小而不重要指标的权重指标系数大”的不合理现象 。
(一)变异系数法
变异系数法的基本思想是:在通过指标体系进行评估时,指标体系中各指标所包含的信息量不同,即各指标对被评估对象的区分能力不同 。一般来讲,如果一个指标能够明确区分其他指标,则该指标与其他指标的差异大,说明该指标包含的信息量大,应该赋予该指标较大的权重;反之,则应赋予较小的权重 。在统计学中,指标的变异信息量常用方差衡量,但由于指标量纲和数量级的差异,各指标的方差不具有可比性 。因此 , 选用各指标的变异系数作为衡量指标变异信息量大小的指标 。将各指标的变异系数做归一化处理,就可得到各指标的权重 。具体过程如下:
设指标体系由m个指标组成 , 有n个参评样本,计算出各指标的均值和方差:
【变异系数法_客观赋权法】地质资料社会化服务评估研究
则各指标的变异系数为:
地质资料社会化服务评估研究
对Vi做归一化处理,即可得出各指标的权重wi
地质资料社会化服务评估研究
(二)熵值法
熵是信息论中测量不确定性的量,信息量越大,不确定性就越?。?熵也就越小 。反之,信息量越?。?不确定性就越大,熵也就越大 。熵值法就是用指标熵值来确定权重大小的方法 。一般的,将评估对象集记为{Ai}(i=1,2,…,m),用于评估的指标集记为{Xj}(j=1,2,…,n),用xij表示第i个方案第j个指标的原始值 。熵值法的计算过程为:
(1)将xij做正向化处理,并计算第j个指标第i个方案所占的比重pij
地质资料社会化服务评估研究
(2)计算第j个指标的熵值ej
地质资料社会化服务评估研究
(3)计算第j个指标的差异系数gj
地质资料社会化服务评估研究
(4)计算第j个指标的权重wj
地质资料社会化服务评估研究
熵值法是突出局部差异的权重计算方法,是根据同一指标观测值之间的差异程度来反映其重要程度的 。这种方法 , 有时可能造成重要指标的权重系数小而不重要指标的权重系数大的不合理现象 。
(三)多元统计分析法
多元统计分析法是处理多变量数据的有力工具,在构建评估指标体系的权重时,主要使用到主成分分析法和因子分析法 。
1.主成分分析法(Principal component analysis)
用主成分分析法进行多指标综合评价的基本原理是通过适当的数学变换使新的指标成为原有指标的线性组合,并用较少的指标(主成分)代替原有指标,主成分之间相互独立 。可以证明:指标的协方差矩阵的第k个特征值等于第k个主成分的方差(k=1,2 , …,n);其对应的特征向量是第k个主成分的相应系数;并且主成分按照方差大小顺序排列 。因此,第一主成分代表原有指标的信息最多,第二主成分次之,根据此原理,利用主成分能构造综合指数 。
主成分分析确定权重的步骤如下:
(1)原始指标数据标准化;
(2)计算指标间的相关系数矩阵R;
(3)计算R的特征根和特征向量;
(4)根据主成分的方差贡献率 确定主成分个数p;
(5)将p个主成分综合为综合指数 。
2.因子分析法(Factor analysis)
用因子分析法确定权重的原理是:从所研究的全部原始变量中,将有关信息集中起来,通过讨论相关矩阵的内部依赖关系,将多指标综合成少数因子(综合指标),再现指标与因子之间的相关关系,并进一步分析这些相关关系的内部原因 。因子分析法确定权重的步骤是:
(1)原始指标数据标准化;
(2)计算指标间的相互关系矩阵R;
(3)计算R的特征根和特征向量;
(4)根据方差贡献率 (α一般取85%)确定特征根的个数和和相应的特征向量Ui(i=1,2,…,m),利用m个特征值和特征向量建立初始因子载荷矩阵 ;
(5)建立因子模型:
地质资料社会化服务评估研究
式中f1,f2 , …,fm为公共因子;ξ为特殊因子 。
(6)对初始因子载荷矩阵进行旋转变换,使载荷矩阵结构简单,关系明确 。如果初始因子间不相关,采用方差进行极大正交旋转;如果因子间有相关关系,则进行斜交旋转 。通过旋转得到比较理想的因子在乎矩阵Al=(ai,j)n×m;
(7)将因子表示为变量的线性组合,由最小二乘法估计求出因子得分系数矩阵:
地质资料社会化服务评估研究
(8)确定权重 。指标xj的权重是 其中 为方差贡献率,将βi归一化为xj的权重 。客观赋权法
是百度文库里的一篇文章,免费的讲解权重求解比较全 。
- 变异系数计算公式_你好,请问岩土工程勘察中的标准值,修正系数,变...
- 变异系数怎么算_SPSS 中变异系数如何计算
- 变异系数公式_在EXCEL中怎样计算样本标准差和变异系数
- 木炭是怎么制造的
- 吉他入门调音方法 吉他调音方法介绍
- 宽带线怎么接插头
- 发膜的用法_发膜和护发素的区别是什么?
- 发膜使用方法_发膜的正确用法
- 味浓不腻的冬菜扣肉的做法
- 发烧的物理疗法_发烧后有什么物理治疗方法