高考数学复习公式_高考数学的重点在哪些部分?

高考数学试卷给公式么?圆锥侧面积公式,一般会在试卷前面给出.不一定会用到 。圆台,棱台之类的不常见几何体的侧面积 , 体积计算公式都会给出 。棱锥,棱柱的体积公式,这个要自己记 。
球的表面积和体积公式 , 可能会给,这个最好记一下 , 我不确定是否一定会给 。关键是这个确实很好记 。
统计方面的公式,一定会在相应题目后面给出 。比如:相关系数计算公式,回归直线方程,独立性计算公式,以及正态分布的参考数据 , 这些都是肯定会给的,不用记,而且很难记 。
三角函数恒等变换公式,正余弦定理是肯定要自己背的 。求导公式也肯定是要自己记的.
求高考数学公式,推论以及规律1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的 )
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba
a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
一、理解集合中的有关概念
(1)集合中元素的特征: 确定性 ,互异性  ,  无序性。
集合元素的互异性:如:,,求 ;
(2)集合与元素的关系用符号,表示 。
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集。
(4)集合的表示法: 列举法  ,  描述法,韦恩图。
注意:区分集合中元素的形式:如: ; ; ; ; ;

(5)空集是指不含任何元素的集合 。( 、 和 的区别;0与三者间的关系)
空集是任何集合的子集,是任何非空集合的真子集 。
注意:条件为 ,在讨论的时候不要遗忘了 的情况 。
如:  , 如果 ,求 的取值 。
二、集合间的关系及其运算
(1)符号“ ”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ;
符号“ ”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系。
(2) ; ;
(3)对于任意集合,则:
① ; ; ;
② ; ;
; ;
③ ; ;
(4)①若 为偶数,则 ;若 为奇数,则 ;
②若 被3除余0,则 ;若 被3除余1,则 ;若 被3除余2 , 则 ;
三、集合中元素的个数的计算:
(1)若集合 中有 个元素,则集合 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是。
(2) 中元素的个数的计算公式为: ;
(3)韦恩图的运用:
四、 满足条件,满足条件 ,
若 ;则 是 的充分非必要条件 ;
若 ;则 是 的必要非充分条件 ;
若 ;则 是 的充要条件 ;
若 ;则 是 的既非充分又非必要条件 ;
五、原命题与逆否命题,否命题与逆命题具有相同的 ;
注意:“若,则 ”在解题中的运用,
如:“ ”是“ ”的 条件 。
六、反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立,
步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确 。
矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题 。
适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时 。
正面词语 等于 大于 小于 是 都是 至多有一个
否定
正面词语 至少有一个 任意的 所有的 至多有n个 任意两个
否定
二、函数
一、映射与函数:
(1)映射的概念: (2)一一映射:(3)函数的概念:
如:若  ,  ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个 , 若 ,则 到 的一一映射有 个 。
函数 的图象与直线 交点的个数为 个 。
二、函数的三要素: ,,。
相同函数的判断方法:① ;② (两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
①,则 ; ② 则 ;
③,则 ; ④如:  , 则 ;
⑤含参问题的定义域要分类讨论;
如:已知函数 的定义域是 ,求 的定义域 。
⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定 。如:已知扇形的周长为20,半径为  , 扇形面积为  , 则 ;定义域为。
(3)函数值域的求法:
①配方法:转化为二次函数 , 利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如:  , 利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域 。
⑧数形结合:根据函数的几何图形 , 利用数型结合的方法来求值域 。
求下列函数的值域:① (2种方法);
② (2种方法);③ (2种方法);
三、函数的性质:
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言 。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法 。
应用:比较大?。?证明不等式,解不等式 。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系 。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数 。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解 。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期 。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式 。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律 。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换 y=f(x)→y=f(x+a),y=f(x)+b
注意:(?。┯邢凳忍崛∠凳?。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象 。
(ⅱ)会结合向量的平移,理解按照向量 (m , n)平移的意义 。
对称变换 y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x) ,关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留 , x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留 , 然后将y轴右边部分关于y轴对称 。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换 。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
如: 的图象如图,作出下列函数图象:
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;(8) ;
(9)。
五、反函数:
(1)定义:
(2)函数存在反函数的条件: ;
(3)互为反函数的定义域与值域的关系: ;
(4)求反函数的步骤:①将 看成关于 的方程,解出  , 若有两解 , 要注意解的选择;②将 互换 , 得 ;③写出反函数的定义域(即 的值域) 。
(5)互为反函数的图象间的关系: ;
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数 。
如:求下列函数的反函数: ; ;
七、常用的初等函数:
(1)一元一次函数: ,当 时,是增函数;当 时,是减函数;
(2)一元二次函数:
一般式: ;对称轴方程是 ;顶点为 ;
两点式: ;对称轴方程是 ;与 轴的交点为 ;
顶点式: ;对称轴方程是 ;顶点为 ;
①一元二次函数的单调性:
当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数;
②二次函数求最值问题:首先要采用配方法,化为 的形式,
Ⅰ、若顶点的横坐标在给定的区间上,则
时:在顶点处取得最小值 , 最大值在距离对称轴较远的端点处取得;
时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;
Ⅱ、若顶点的横坐标不在给定的区间上 , 则
时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得;
时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得;
有三个类型题型:
(1)顶点固定 , 区间也固定 。如:
(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外 。
(3)顶点固定,区间变动 , 这时要讨论区间中的参数.
③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则:
根的情况
等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根
充要条件
注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况 。
(3)反比例函数:
(4)指数函数:
指数运算法则: ; ;。
指数函数:y= (a>o,a≠1) , 图象恒过点(0,1),单调性与a的值有关,在解题中 , 往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图 。
(5)对数函数:
指数运算法则: ; ; ;
对数函数:y= (a>o,a≠1) 图象恒过点(1 , 0),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论 , 要能够画出函数图象的简图 。
注意:(1) 与 的图象关系是 ;
(2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较 。
(3)已知函数 的定义域为,求 的取值范围 。
已知函数 的值域为 ,求 的取值范围 。
六、 的图象:
定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数 。
七、补充内容:
抽象函数的性质所对应的一些具体特殊函数模型:
① 正比例函数
② ; ;
③ ; ;
④ ;
三、导 数
1.求导法则:
(c)/=0 这里c是常数 。即常数的导数值为0 。
(xn)/=nxn-1 特别地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k•f(x))/= k•f/(x)
2.导数的几何物理意义:
k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率 。
V=s/(t) 表示即时速度 。a=v/(t) 表示加速度 。
3.导数的应用:
①求切线的斜率 。
②导数与函数的单调性的关系
一 与 为增函数的关系 。
能推出 为增函数,但反之不一定 。如函数 在 上单调递增,但  , ∴ 是 为增函数的充分不必要条件 。
二 时,与 为增函数的关系 。
若将 的根作为分界点,因为规定,即抠去了分界点,此时 为增函数,就一定有。∴当 时,是 为增函数的充分必要条件 。
三 与 为增函数的关系 。
为增函数,一定可以推出 ,但反之不一定 , 因为,即为 或。当函数在某个区间内恒有 ,则 为常数,函数不具有单调性 。∴ 是 为增函数的必要不充分条件 。
函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性 。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题 。但在实际应用中还会遇到端点的讨论问题 , 要谨慎处理 。
四单调区间的求解过程 , 已知 (1)分析 的定义域;(2)求导数 (3)解不等式  , 解集在定义域内的部分为增区间(4)解不等式,解集在定义域内的部分为减区间 。
我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性 。以下以增函数为例作简单的分析,前提条件都是函数 在某个区间内可导 。
③求极值、求最值 。
注意:极值≠最值 。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个 。最小值为极小值和f(a) 、f(b)中最小的一个 。
f/(x0)=0不能得到当x=x0时,函数有极值 。
但是,当x=x0时,函数有极值 f/(x0)=0
判断极值,还需结合函数的单调性说明 。
4.导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型 。
2.关于函数特征 , 最值问题较多,所以有必要专项讨论 , 导数法求最值要比初等方法快捷简便 。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意 。
四、不等式
一、不等式的基本性质:
注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题 。
(2)注意课本上的几个性质,另外需要特别注意:
①若ab>0,则。即不等式两边同号时,不等式两边取倒数,不等号方向要改变 。
②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论 。
③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小 。
④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小
二、均值不等式:两个数的算术平均数不小于它们的几何平均数 。
若 ,则 (当且仅当 时取等号)
基本变形:① ; ;
②若 ,则,
基本应用:①放缩,变形;
②求函数最值:注意:①一正二定三取等;②积定和?。投ɑ?。
当 (常数),当且仅当 时,;
当 (常数),当且仅当 时,;
常用的方法为:拆、凑、平方;
如:①函数 的最小值。
②若正数 满足,则 的最小值。
三、绝对值不等式:
注意:上述等号“=”成立的条件;
四、常用的基本不等式:
(1)设 ,则 (当且仅当 时取等号)
(2) (当且仅当 时取等号); (当且仅当 时取等号)
(3) ; ;
五、证明不等式常用方法:
(1)比较法:作差比较:
作差比较的步骤:
⑴作差:对要比较大小的两个数(或式)作差 。
⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和 。
⑶判断差的符号:结合变形的结果及题设条件判断差的符号 。
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小 。
(2)综合法:由因导果 。
(3)分析法:执果索因 。基本步骤:要证……只需证……,只需证……
(4)反证法:正难则反 。
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的 。
放缩法的方法有:
⑴添加或舍去一些项,如: ;
⑵将分子或分母放大(或缩?。?
⑶利用基本不等式,如: ;
⑷利用常用结论:
Ⅰ、 ;
Ⅱ、 ; (程度大)
Ⅲ、 ; (程度?。?
(6)换元法:换元的目的就是减少不等式中变量 , 以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元 。如:
已知 ,可设 ;
已知 ,可设 ( );
已知  , 可设 ;
已知 ,可设 ;
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
六、不等式的解法:
(1)一元一次不等式:
Ⅰ、 :⑴若 ,则 ;⑵若 ,则 ;
Ⅱ、 :⑴若,则 ;⑵若  , 则 ;
(2)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对 进行讨论:
(5)绝对值不等式:若,则 ; ;
注意:(1).几何意义: : ; : ;
(2)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:
⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;①若 则 ;②若 则 ;③若 则 ;
(3).通过两边平方去绝对值;需要注意的是不等号两边为非负值 。
(4).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解 。
(6)分式不等式的解法:通解变形为整式不等式;
⑴ ;⑵ ;
⑶ ;⑷ ;
(7)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分 。
(8)解含有参数的不等式:
解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:
①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.
②在求解过程中,需要使用指数函数、对数函数的单调性时 , 则需对它们的底数进行讨论.
③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向 , 对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要分 、 、 讨论 。
五、数列
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上 , 突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是 , 若给出一个数列的前 项和  , 则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容 , 利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算 , 是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时 , 应注意摆脱呆板使用公式求解的思维定势 , 运用整
体思想求解.
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题 , 再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列{an}的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数 。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0) , Sn=na1是关于n的正比例式 。
12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项 , an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时 , Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列 。
15、等差数列{an}中 , 若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列 。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列 。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列 。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列 。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列 。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
24、{an}为等差数列,则 (c>0)是等比数列 。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列 。
26. 在等差数列 中:
(1)若项数为 ,则
(2)若数为 则 ,   , 
27. 在等比数列 中:
(1) 若项数为,则
(2)若数为 则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等 。关键是找数列的通项结构 。
28、分组法求数列的和:如an=2n+3n
29、错位相减法求和:如an=(2n-1)2n
30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an=
33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得 取最小值 。
在解含绝对值的数列最值问题时,注意转化思想的应用 。
六、平面向量
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量 。
2. 加法与减法的代数运算:
(1) .
(2)若a=( ),b=( )则a b=( ).
向量加法与减法的几何表示:平行四边形法则、三角形法则 。
以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = -
且有| |-| |≤| |≤| |+| |.
向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);
+0= +(- )=0.
3.实数与向量的积:实数 与向量 的积是一个向量 。
(1)| |=| |·| |;
(2) 当 >0时, 与 的方向相同;当 <0时,与 的方向相反;当 =0时 ,  =0.
(3)若 =( ),则 · =( ).
两个向量共线的充要条件:
(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= .
(2) 若 =( ),b=( )则 ‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数 ,,使得 = e1+ e2.
4.P分有向线段 所成的比:
设P1、P2是直线 上两个点 , 点P是 上不同于P1、P2的任意一点 , 则存在一个实数 使 = ,叫做点P分有向线段 所成的比 。
当点P在线段 上时, >0;当点P在线段 或 的延长线上时,<0;
分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: .
5. 向量的数量积:
(1).向量的夹角:
已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角 。
(2).两个向量的数量积:
已知两个非零向量 与b , 它们的夹角为 ,则 ·b=| |·|b|cos .
其中|b|cos 称为向量b在 方向上的投影.
(3).向量的数量积的性质:
若 =( ),b=( )则e· = ·e=| |cos (e为单位向量);
⊥b ·b=0 (,b为非零向量);| |= ;
cos = = .
(4) .向量的数量积的运算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题 , 特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等 。由于向量是一新的工具 , 它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点 。
七、立体几何
1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题 。
能够用斜二测法作图 。
2.空间两条直线的位置关系:平行、相交、异面的概念;
会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法 。
【高考数学复习公式_高考数学的重点在哪些部分?】扩展
大神有连接吗?好多东西没出来啊.

高考前高中数学该怎样复习、公式定理该怎样记 。那...自己画一张知识框架图,这个可能开始画的时候会很困难,但是如果你画成了,那么高中数学之间的联系你就明白的差不多了 。我凭印象记高考时重点有三角函数 , 数列(求和,求通项的几种方法),解析,证明,把不会的地方弄明白了,三角函数,数列是不可以丢分的题,选做题时不可以丢分的题 。记公式吧是要靠做题来练,公式熟练了,做题就简单了~但是同一类型的题不要一直做 , 挑几道就好,把不会的弄清楚,弄明白了,基本就没有问题了~~加油哦!希望能对你有所帮助!
高考数学公式?简单几何体的表面积和体积
(1)S直棱柱侧=c•h
(c为底面的周长,h为高).
(2)S正棱锥侧=12ch′
(c为底面周长,h′为斜高).
(3)S正棱台侧=12(c′+c)h′
(c与c′分别为上、下底面周长,h′为斜高).
(4)圆柱、圆锥、圆台的侧面积公式
S圆柱侧=2πrl(r为底面半径,l为母线) , 
S圆锥侧=πrl(同上),
S圆台侧=π(r′+r)l(r′、r分别为上、下底的半径,l为母线).
(5)体积公式:
V柱=S•h (S为底面面积 , h为高),
V锥=13S•h(S为底面面积,h为高).
V台=13(S+SS′+S′)h(S、S′为上、下底面面积,h为高).
(6)球的表面积和体积
S球=4πR2,V球=43πR3.
4.异面直线的判定
反证法.如(1)“a、b为异面直线”是指:①a∩b=∅,但a不平行于b;②a⊂面α,b⊂面β且a∩b=∅;③a⊂面α , b⊂面β且α∩β=∅;④a⊂面α , b⊄面α;⑤不存在平面α,能使a⊂面α且b⊂面α成立.上述结论中,正确的是.
(2)在空间四边形ABCD中,M、N分别是AB、CD的中点,设BC+AD=2a,则MN与a的大小关系是.
(3)若E、F、G、H顺次为空间四边形ABCD四条边AB、BC、CD、DA的中点,且EG=3,FH=4,则AC2+BD2=_________.
(4)如果a、b是异面直线,P是不在a、b上的任意一点,下列四个结论:①过点P一定可以作直线l与a、b都相交;②过点P一定可以作直线l与a、b都垂直;③过点P一定可以作平面α与a、b都平行;④过点P一定可以作直线l与a、b都平行.其中正确的结论是.
(5)如果两条异面直线称作一对,那么正方体的十二条棱中异面直线的对数为.
5.两直线平行的判定
(1)定理4:平行于同一直线的两直线互相平行;
(2)线面平行的性质:如果一条直线和一个平面平行 , 那么经过这条直线的平面和这个平面相交的交线和这条直线平行;
(3)面面平行的性质:如果两个平行平面同时与第三个平面相交,那么它们的交线平行;
(4)线面垂直的性质:如果两条直线都垂直于同一个平面,那么这两条直线平行.
(3)直线与平面平行.其中直线与平面相交、直线与平面平行都叫作直线在平面外.
如下列命题中,正确的是()
A.若直线a平行于平面α内的一条直线b,则a∥α
B.若直线a垂直于平面α的斜线b在平面α内的射影,
则a⊥b
C.若直线a垂直于平面α,直线b是平面α的斜线 , 则a与b是异面直线
D.若一个棱锥的所有侧棱与底面所成的角都相等,且所
有侧面与底面所成的角也相等,则它一定是正棱锥
(3)直线与平面平行.其中直线与平面相交、直线与平面平行都叫作直线在平面外.
如下列命题中,正确的是()
A.若直线a平行于平面α内的一条直线b,则a∥α
B.若直线a垂直于平面α的斜线b在平面α内的射影 , 
则a⊥b
C.若直线a垂直于平面α,直线b是平面α的斜线,则a与b是异面直线
D.若一个棱锥的所有侧棱与底面所成的角都相等,且所
有侧面与底面所成的角也相等,则它一定是正棱锥
8.直线与平面平行的判定和性质
(1)判定:①判定定理:如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;②面面平行的性质:若两个平面平行,则其中一个平面内的任何直线与另一个平面平行.
(2)性质:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交的交线和这条直线平行.在遇到线面平行时,常需作出过已知直线且与已知平面相交的辅助平面,以便运用线面平行的性质.如α、β表示平面,a、b表示直线 , 则a∥α的一个充分不必要条件是()
A.α⊥β , a⊥βB.α∩β=b,且a∥b
C.a∥b且b∥αD.α∥β且a⊂β
高考数学公式总结高中数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a 0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差 。(二)椭圆面积计算公式 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积 。以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来 。常数为体,公式为用 。椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高 三角函数 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 四倍角公式: sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4) 五倍角公式: sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六倍角公式: sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1)) tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6) 七倍角公式: sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6) 八倍角公式: sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8) 九倍角公式: sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8) 十倍角公式: sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1)) tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) 万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6 1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有两个不相等的个实根 b2-4ac0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积,L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 图形周长 面积 体积公式 长方形的周长=(长+宽)×2 正方形的周长=边长×4 长方形的面积=长×宽 正方形的面积=边长×边长 三角形的面积 已知三角形底a,高h,则S=ah/2 已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2) 和:(a+b+c)*(a+b-c)*1/4 已知三角形两边a,b,这两边夹角C,则S=absinC/2 设三角形三边分别为a、b、c,内切圆半径为r 则三角形面积=(a+b+c)r/2 设三角形三边分别为a、b、c,外接圆半径为r 则三角形面积=abc/4r 已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶) | a b 1 | S△=1/2 * | c d 1 | | e f 1 | 【| a b 1 | | c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC | e f 1 | 选区取最好按逆时针顺序从右上角开始?。蛭庋〉贸龅慕峁话愣嘉? ,如果不按这个规则?。?可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大?。?秦九韶三角形中线面积公式 S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3 其中Ma,Mb,Mc为三角形的中线长. 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径=半径×2 半径=直径÷2 圆的周长=圆周率×直径= 圆周率×半径×2 圆的面积=圆周率×半径×半径 长方体的表面积= (长×宽+长×高+宽×高)×2 长方体的体积 =长×宽×高 正方体的表面积=棱长×棱长×6 正方体的体积=棱长×棱长×棱长 圆柱的侧面积=底面圆的周长×高 圆柱的表面积=上下底面面积+侧面积 圆柱的体积=底面积×高 圆锥的体积=底面积×高÷3 长方体(正方体、圆柱体) 的体积=底面积×高 平面图形 名称 符号 周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2?sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 推论及定理 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中 , 垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等 , 两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行 , 内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等 24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(sss) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等 , 那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于(n-2)×180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半 , 即s=(a×b)÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角 , 四条边都相等 70正方形性质定理2正方形的两条对角线相等 , 并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形 , 对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81 三角形中位线定理 三角形的中位线平行于第三边 , 并且等于它的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h 83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d 85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交 , 所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似(asa) 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas) 94 判定定理3 三边对应成比例,两三角形相似(sss) 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例 , 那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离相等的点的轨迹 , 是着条线段的垂直平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109定理 不在同一直线上的三点确定一个圆 。110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等 , 所对的弦相等 , 所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中 , 相等的圆周角所对的弧也相等 118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121①直线l和⊙o相交 d<r ②直线l和⊙o相切 d=r ③直线l和⊙o相离 d>r 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心 126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等 131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 132切割线定理 从圆外一点引圆的切线和割线 , 切线长是这点到割 线与圆交点的两条线段长的比例中项 133推论 从圆外一点引圆的两条割线 , 这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上 135①两圆外离 d>r+r ②两圆外切 d=r+r ③两圆相交 r-r<d<r+r(r>r) ④两圆内切 d=r-r(r>r) ⑤两圆内含d<r-r(r>r) 136定理 相交两圆的连心线垂直平分两圆的公共弦 137定理 把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆 , 这两个圆是同心圆 139正n边形的每个内角都等于(n-2)×180°/n 140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积sn=pnrn/2 p表示正n边形的周长 142正三角形面积√3a/4 a表示边长 143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360° , 因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式:l=nπr/180 145扇形面积公式:s扇形=nπr2/360=lr/2 146内公切线长= d-(r-r) 外公切线长= d-(r+r) 147等腰三角形的两个底脚相等 148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 149如果一个三角形的两个角相等 , 那么这两个角所对的边也相等 150三条边都相等的三角形叫做等边三角形
江苏高考数学公式大全1.诱导公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的三角函数
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化积公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半角公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.万能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的 )
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba
a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2 
2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标 
圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0
抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
参考资料:
高考数学的重点在哪些部分?2010年高考数学考试重点及冲刺复习建议(2010-02-02 14:01:05)转载标签:2010高考数学教育
2010年高考数学重点提示和最后四个月冲刺复习建议
付正军
一、2010年高考数学考查的重点:
根据《2010高考数学考试大纲》,重点考察函数、数列、三角函数、平面向量、不等式、立体几何、解析几何、概率统计、导数九大章节 。作为高考来讲重点考查下面几个版块:
(1)函数与导数:在这个版块重点考查,二次函数,高次函数,分式函数和复合函数的单调性和最值,考生尤其要重视分式函数和指对复合函数的单调性和值域的求解方法 。同时考生应重视函数与数列、函数与不等式的结合 , 灵活掌握处理这类综合题的方法和技巧,抓住典型例题,以不变应万变 。
(2)平面向量与三角函数:在这个版块里 , 将向量作为一种工具放在三角函数里考 , 重点考查三方面:①三角的化简与求值,考查化简与求值,重点考察的是五组三角公式,包括同角基本公式,诱导公式,倍半公式,和差公式和辅助角公式②图象和性质:在这里重点考查的是正弦函数和余弦函数的图象和性质 , 掌握正弦和余弦函数的性质应该从以下的7个方面去掌握:定义域,值域,单调性,奇偶性,图象,周期性和对称性,特别是正弦和余弦函数的性质是高考重点中的重点,应特别关注 。③三角恒等变形,这部分重点考察的还是一些基本公式的应用,提醒各位考生应加强对基本公式的理解和记忆 。
(3)数列:在这个版块里重点考查的是数列的通项与求和,在这里面我们重点掌握几种常见求通项的方法 , 包括公式法,待定系数法等等,在求和里面我们重点掌握几种常见求和的方法,包括利用公式法,裂项相加法,错位相减法等等,在这里要强调的是要掌握每一种方法所适应于哪一类的数列 。一般来讲在高考中通项是重点也是难点,特别是项与项之间的递推公式应重点掌握 。对于数列的求和特别应该重视等比数列求和公式中公比的限制性条件,这是高考的一个易错点,应重点关注!
(4)空间向量和立体几何:2010新课标高考对这个版块的要求降低 。特别是对文科同学来说,对于角度和距离的计算仅限于线线角和点面距离、几何体的表面积和体积 。在证明中以线面平行,线面垂直的证明为主 。对于理科同学来讲,在这里我建议大家要掌握利用空间向量俩来解决立体几何中的证明和计算问题 。特别强调的是利用空间向量求解的时候必须准确记忆角度和距离的计算公式,然后理解公式中各字母的含义,按照公式去找条件即可 。对于这部分考生除对传统的证明和计算重点掌握之外还应加强对立体几何中的翻转问题、动点问题训练,以从容应对高考中的新题、难题 。
(5)概率和统计:高中阶段重点掌握古典概型、几何概型和随机变量三类基本模型 。这部分在高考中是以应用题的形式出现,在这里我要强调的是概率这道题在高考中难度往往较小,考生只需要认真读题,读懂题意,分清类型就可以解答出来了 。对于2010年高考来说考生应重视统计这一部分的学习,特别是线性回归、统计方法等考生应准确理解基本概念并会简单应用 。
(6)解析几何:这个版块我总结了在高考中常考的五种模型:第一类:直线和曲线的位置关系及向量的计算,这类题目是高考最常见的一类问题,考生应掌握它的通法 。第二类:动点问题(消参法) , 在这里需要强调的是要注意动点所满足的范围限制 。第三类:弦长问题(公式法),在这里考生只需要会利用弦长公式就可以了;第四类:对称问题(代换法),即找中点来代换;第五类:中点问题(点差法) 。解析几何的这道题目往往是整个试卷中计算量最大的一道题目了,很多同学会做但不会算,这种情况在高考中是很常见的,这就需要我们在平时训练的时候要善始善终,每做一道题就坚持把它算完,长期坚持养成好习惯,运算能力自然就会提高 。这五类模型考生都应该重点掌握 , 高考中尽管解析的难度较大,但万变不离其宗,只要基本模型熟练掌握,应对这道大题还是绰绰有余的 。
(7)数列,函数与不等式:这个版块往往考的是压轴题 , 以不等式的证明为主,难度往往很大,考生在复习备考中应重点积累一些不等式的证明方法,包括放缩法,数学归纳法等等 。虽然难度较大,我建议考生采取分步得分 , 不留空白 。对于这部分的复习我建议可以放在后期,5月份之后可以适当看看已经考过的压轴题,开阔思路 , 对于大部分考生不作重点要求 。
二、最后四个月应该注意的问题:
现在距离2010年高考还有四个多月的时间,这是考生综合素质提高的黄金时间,这段时间,也称为全面复习阶段 , 同学们需要把前面一些零散的知识点系统化、条理化、模块化,找到学科中的宏观线索,提纲挚领,全面到位 。下面我根据以往的高考数学复习的经验,结合优秀考生的学习体会,谈谈这最后四个月的复习建议 。
(一)、全面落实双基 , 保证驾轻就熟
目前高考数学试卷,基础知识和基本方法的考查占80%左右的份量,即使是创新题或能力题也是建立在双基之上,只有脚踏实地、一丝不苟地巩固双基 , 才能突破难题,战胜新题 。在这里我要强调的是教材是精品 , 只有把握了教材,也就切中了要害 。不仅要深刻理解教材中的知识,更重要的是要关注教材中解决问题的思想方法,还要全面把握知识体系,做到不掌握不放过 。对照《考试说明》,确定考试范围,认真阅读和理解教材中相关内容 , 包括每个概念、每个例题、每个注释、每个图形,准确理解和记忆知识点,不留空白和隐患 。最后复习阶段不防从课本的目录入手,进行串联,形成体系 。同时要配以适量的练习,练习中遇到困难也在所难免,必须找到问题的症结在那里,对照教材,彻底扫除障碍 。回归教材、吃透课本,千万不能眼高手 。,对于教材的复习,建议可以重点看看概率和统计、数列、函数、导数、圆锥曲线这几章的例题 。
(二)、重视错题病例,实时亡羊补牢
错题病例也是财富,它有时暴露我们的知识缺陷 , 有时暴露我们的思维不足,有时暴露我们方法的不当,毛病暴露出来了 , 也就有治疗的方向,提供了纠错的机会,因此我建议在后期冲刺的阶段我们一定要建立错题库,特别是那些概念理解不深刻、知识记忆失误、思维不够严谨、方法使用不当等典型错误收集成册,并加以评注,指出错误原因,经常翻阅 , 常常提醒 , 警钟长鸣 。
(三)、抓住典型例题,争取融会贯通
现在离高考已不远了,时间非常紧张,因此在最后的复习阶段考生应该抓住宝贵的时间,在最短时间内最大程度提高学习效率 , 那我们就不能做大量重复的无用功,因此我们要学会选题,那就需要我们抓住一些典型问题,借题发挥,充分挖掘 。具体的就是解题后反思 。反思题意,总结解此类题目的方法和技巧,同时我们还要学会典型问题的引申变化,促进知识的串联和方法的升华 。那么到底什么是典型例题呢?那就是高考真题,特别是近三年以来高考真题中的解答题(重点做前5道)
(四)、精读考试大纲,确保了如指掌
《考试说明》是高考命题的依据,〈大纲〉明确告诉我们高考考什么、考多难、怎样考这三个问题 。考生一定要明确考试的知识要求 。针对教材与复习时的笔记逐一对照,看是否得到了落实,确保没有遗漏,对于那些没有没达要求的决不罢手 。特别是大纲中调整的内容,比如2010新课标高考新增三视图,程序与框图、极坐标、几何概型、微积分等必须高度重视,明确要求,提高复习的针对性和实效性 。另外,对试卷的形式,题型、考试时间、分值等等也应一清二楚 。
(五)、加强毅力训练,做到持之以恒
最后的四个月是高考冲刺最关键的时候,很多考生身心俱疲 , 那就看谁能坚持到最后谁就能取得胜利 。最后的阶段,我们同样每天要有明确的学习计划,并坚决执行,不寻找借口 。任何一门学科,只要三天不接触,拿到题目时,将会觉得入手不顺,思维不畅,效率不高且容易出错,若5天不训练将会不进而退 。所以 , 建议各个学科每天都要有所巩固 , 遇到困难应及时解决,不能积累,否则会打击信心,丧失斗志,要想高考成功,即要有热情更要有毅力!