高二数学知识点总结_谁有人教A版高一、高二数学知识点的总结

高中数学知识点总结怎样学好高中数学?首先要摘要答题技巧
现在数学这个科目也是必须学习的内容,但是现在还有很多孩子们都不喜欢这个科目,原因就是因为他们不会做这些题,导致这个科目拉他们的总分,该怎样学好高中数学?对于数学题,他们都分为哪些类型?

高二数学知识点总结_谁有人教A版高一、高二数学知识点的总结

文章插图
高中数学试卷
怎样学好高中数学这也是需要我们自己群摸索一些学习的技巧,找到自己适合的方法,这还是很关键的.高中数学必修1知识点总结【高二数学知识点总结_谁有人教A版高一、高二数学知识点的总结】马上就要高考了,现在高中数学让很多孩子头疼,很多的家长还有孩子都开始着急,他们都在上一些辅导班,都在采取一对一的辅导,对于一对一的教师都是可以抓住孩子的一些弱点,然后还要了解他们的学习过程,还会帮助学生制定一些计划,帮助他们提高学习的效率,对于高中数学,一定掌握学习的方法,才可以提高成绩.高中数学都要学习什么知识?
高二数学知识点总结_谁有人教A版高一、高二数学知识点的总结

文章插图
高中数学知识
对于高中数学的一些知识,其实还是很简单的,只要你抓住学习的方法,从中找到乐趣,让自己喜欢上数学,对你的学习是很有帮助的,至于一对一辅导,其实还是有用的,好的老师会给你讲述好的学习方法,然后让你考一个好成绩,拿到满意的答卷.高中数学知识点总结
最低0.27元/天开通百度文库会员,可在文库查看完整内容>
原发布者:锦信科技与教育信息技术服务平台
高二数学知识点总结_谁有人教A版高一、高二数学知识点的总结

文章插图
高中数学考试必备知识点整理有很多的同学是非常想知道,高中数学考试必备知识点有哪些,小编整理了相关信息 , 希望会对大家有所帮助!  1高中数必备的知识点有哪些必修一  第一章:集合和函数的基本概念  这一章的易错点,都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就会丢分 。次一级的知识点就是集合的韦恩图、会画图,掌握了这些,集合的“并、补、交、非”也就解决了 。  还有函数的定义域和函数的单调性、增减性的概念 , 这些都是函数的基础而且不难理解 。在第一轮复习中一定要反复去记这些概念 , 最好的方法是写在笔记本上,每天至少看上一遍 。  第二章:基本初等函数 ——指数、对数、幂函数三大函数的运算性质及图像  函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等 。关于这三大函数的运算公式,多记多用,多做一点练习,基本就没问题 。 高中数学知识点详细总结高中数学重点有什么?该怎样攻克?
高中数学重点内容还有很多.这些重点都是保持多年来的经验,他们分析过高考数学的题型,高中数学重点分为以下几个部分.
高二数学知识点总结_谁有人教A版高一、高二数学知识点的总结

文章插图
向量讲解
其实高中数学重点就是在必修的里面.必修是每个高中生都必须学习的,不管是分不分文理科,他们都是会学习的.很多重点都是在必修里面,然而在选秀当中就是讲一些统计之类的问题,这都是我们在生活当中就会学到的,所以这些都不是重点,重中之重就是在必修的课本当中.高中数学必修二知识点总结高中数学必修2知识点
一、直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即 .斜率反映直线与轴的倾斜程度.
当 时, ; 当 时, ; 当 时, 不存在.
②过两点的直线的斜率公式:
注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.
(3)直线方程
①点斜式: 直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.
②斜截式: ,直线斜率为k,直线在y轴上的截距为b
③两点式: ( )直线两点 ,
④截矩式:
其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 .
⑤一般式: (A,B不全为0)
注意:各式的适用范围 特殊的方程如:
平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数);
(5)直线系方程:即具有某一共同性质的直线
(一)平行直线系
平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)
(二)垂直直线系
垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)
(三)过定点的直线系
(?。┬甭饰猭的直线系: ,直线过定点 ;
(ⅱ)过两条直线 , 的交点的直线系方程为
( 为参数),其中直线 不在直线系中.
(6)两直线平行与垂直
当 , 时,

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.
(7)两条直线的交点
相交
交点坐标即方程组 的一组解.
方程组无解 ; 方程组有无数解 与 重合
(8)两点间距离公式:设 是平面直角坐标系中的两个点,

(9)点到直线距离公式:一点 到直线 的距离
(10)两平行直线距离公式
在任一直线上任取一点,再转化为点到直线的距离进行求解.
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
2、圆的方程
(1)标准方程 ,圆心 ,半径为r;
(2)一般方程
当 时,方程表示圆,此时圆心为 ,半径为
当 时,表示一个点; 当 时,方程不表示任何图形.
(3)求圆方程的方法:
一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
设圆 ,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
当 时两圆外离,此时有公切线四条;
当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当 时,两圆内切,连心线经过切点,只有一条公切线;
当 时,两圆内含; 当 时,为同心圆.
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的辅助线一般为连圆心与切线或者连圆心与弦中点
三、立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.
(3)棱台:
几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;
补充
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.
②面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.
9、空间角问题
(1)直线与直线所成的角
①两平行直线所成的角:规定为 .
②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.
③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线 ,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.
(2)直线和平面所成的角
①平面的平行线与平面所成的角:规定为 . ②平面的垂线与平面所成的角:规定为 .
③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.
(3)二面角和二面角的平面角
①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.
②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.
③直二面角:平面角是直角的二面角叫直二面角.
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
④求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

高中数学知识点总结如何归纳?高中数学知识点总结
1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性” 。
中元素各表示什么?
注重借助于数轴和文氏图解集合问题 。
空集是一切集合的子集,是一切非空集合的真子集 。
3. 注意下列性质:
(3)德摩根定律:
4. 你会用补集思想解决问题吗?(排除法、间接法)
的取值范围 。
6. 命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题 。)
原命题与逆否命题同真、同假;逆命题与否命题同真同假 。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?
(一对一,多对一 , 允许B中有元素无原象 。)
8. 函数的三要素是什么?如何比较两个函数是否相同?
(定义域、对应法则、值域)
9. 求函数的定义域有哪些常见类型?
10. 如何求复合函数的定义域?
义域是_____________ 。
11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?
12. 反函数存在的条件是什么?
(一一对应函数)
求反函数的步骤掌握了吗?
(①反解x;②互换x、y;③注明定义域)
13. 反函数的性质有哪些?
①互为反函数的图象关于直线y=x对称;
②保存了原来函数的单调性、奇函数性;
14. 如何用定义证明函数的单调性?
(取值、作差、判正负)
如何判断复合函数的单调性?
∴……)
15. 如何利用导数判断函数的单调性?
值是()
A. 0B. 1C. 2D. 3
∴a的最大值为3)
16. 函数f(x)具有奇偶性的必要(非充分)条件是什么?
(f(x)定义域关于原点对称)
注意如下结论:
(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数 。
17. 你熟悉周期函数的定义吗?
函数,T是一个周期 。)
如:

18. 你掌握常用的图象变换了吗?
注意如下“翻折”变换:
19. 你熟练掌握常用函数的图象和性质了吗?
的双曲线 。
应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程
②求闭区间[m,n]上的最值 。
③求区间定(动) , 对称轴动(定)的最值问题 。
④一元二次方程根的分布问题 。
由图象记性质!(注意底数的限定?。?br />
利用它的单调性求最值与利用均值不等式求最值的区别是什么?

20. 你在基本运算上常出现错误吗?
21. 如何解抽象函数问题?
(赋值法、结构变换法)
22. 掌握求函数值域的常用方法了吗?
(二次函数法(配方法),反函数法 , 换元法,均值定理法 , 判别式法,利用函数单调性法,导数法等 。)
如求下列函数的最值:
23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?
24. 熟记三角函数的定义,单位圆中三角函数线的定义
25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?
(x,y)作图象 。
27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围 。
28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?
29. 熟练掌握三角函数图象变换了吗?
(平移变换、伸缩变换)
平移公式:
图象?
30. 熟练掌握同角三角函数关系和诱导公式了吗?
“奇”、“偶”指k取奇、偶数 。
A. 正值或负值B. 负值C. 非负值D. 正值
31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
理解公式之间的联系:
应用以上公式对三角函数式化简 。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值 。)
具体方法:
(2)名的变换:化弦或化切
(3)次数的变换:升、降幂公式
(4)形的变换:统一函数形式,注意运用代数运算 。
32. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化 , 而解斜三角形?
(应用:已知两边一夹角求第三边;已知三边求角 。)
33. 用反三角函数表示角时要注意角的范围 。
34. 不等式的性质有哪些?
答案:C
35. 利用均值不等式:
值?(一正、二定、三相等)
注意如下结论:
36. 不等式证明的基本方法都掌握了吗?
(比较法、分析法、综合法、数学归纳法等)
并注意简单放缩法的应用 。
(移项通分,分子分母因式分解,x的系数变为1,穿轴法解得结果 。)
38. 用“穿轴法”解高次不等式——“奇穿,偶切”,从最大根的右上方开始
39. 解含有参数的不等式要注意对字母参数的讨论
40. 对含有两个绝对值的不等式如何去解?
(找零点 , 分段讨论,去掉绝对值符号,最后取各段的并集 。)
证明:
(按不等号方向放缩)
42. 不等式恒成立问题,常用的处理方式是什么?(可转化为最值问题,或“△”问题)
43. 等差数列的定义与性质
0的二次函数)
项 , 即:
44. 等比数列的定义与性质
46. 你熟悉求数列通项公式的常用方法吗?
例如:(1)求差(商)法
解:
[练习]
(2)叠乘法
解:
(3)等差型递推公式
[练习]
(4)等比型递推公式
[练习]
(5)倒数法
47. 你熟悉求数列前n项和的常用方法吗?
例如:(1)裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项 。
解:
[练习]
(2)错位相减法:
(3)倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加 。
[练习]
48. 你知道储蓄、贷款问题吗?
△零存整取储蓄(单利)本利和计算模型:
若每期存入本金p元 , 每期利率为r,n期后,本利和为:
△若按复利,如贷款问题——按揭贷款的每期还款计算模型(按揭贷款——分期等额归还本息的借款种类)
若贷款(向银行借款)p元,采用分期等额还款方式,从借款日算起 , 一期(如一年)后为第一次还款日,如此下去,第n次还清 。如果每期利率为r(按复利),那么每期应还x元 , 满足
p——贷款数,r——利率,n——还款期数
49. 解排列、组合问题的依据是:分类相加,分步相乘,有序排列,无序组合 。
(2)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一
(3)组合:从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不
50. 解排列与组合问题的规律是:
相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果 。
如:学号为1,2,3 , 4的四名学生的考试成绩

则这四位同学考试成绩的所有可能情况是()
A. 24B. 15C. 12D. 10
解析:可分成两类:
(2)中间两个分数相等
相同两数分别取90 , 91,92 , 对应的排列可以数出来,分别有3,4 , 3种,∴有10种 。
∴共有5+10=15(种)情况
51. 二项式定理
性质:
(3)最值:n为偶数时,n+1为奇数 , 中间一项的二项式系数最大且为第
表示)
52. 你对随机事件之间的关系熟悉吗?
的和(并) 。
(5)互斥事件(互不相容事件):“A与B不能同时发生”叫做A、B互斥 。
(6)对立事件(互逆事件):
(7)独立事件:A发生与否对B发生的概率没有影响,这样的两个事件叫做相互独立事件 。
53. 对某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列组合的方法,即
(5)如果在一次试验中A发生的概率是p,那么在n次独立重复试验中A恰好发生

如:设10件产品中有4件次品,6件正品 , 求下列事件的概率 。
(1)从中任取2件都是次品;
(2)从中任取5件恰有2件次品;
(3)从中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),∴n=103
而至少有2件次品为“恰有2次品”和“三件都是次品”
(4)从中依次取5件恰有2件次品 。
解析:∵一件一件抽?。ㄓ兴承颍?br />
分清(1)、(2)是组合问题,(3)是可重复排列问题,(4)是无重复排列问题 。
54. 抽样方法主要有:简单随机抽样(抽签法、随机数表法)常常用于总体个数较少时,它的特征是从总体中逐个抽?。幌低吵檠?nbsp;, 常用于总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样 , 主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性 。
55. 对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差 。
要熟悉样本频率直方图的作法:
(2)决定组距和组数;
(3)决定分点;
(4)列频率分布表;
(5)画频率直方图 。
如:从10名女生与5名男生中选6名学生参加比赛,如果按性别分层随机抽样,则组成此参赛队的概率为____________ 。
56. 你对向量的有关概念清楚吗?
(1)向量——既有大小又有方向的量 。
在此规定下向量可以在平面(或空间)平行移动而不改变 。
(6)并线向量(平行向量)——方向相同或相反的向量 。
规定零向量与任意向量平行 。
(7)向量的加、减法如图:
(8)平面向量基本定理(向量的分解定理)
的一组基底 。
(9)向量的坐标表示
表示 。
57. 平面向量的数量积
数量积的几何意义:
(2)数量积的运算法则
[练习]
答案:
答案:2
答案:
58. 线段的定比分点
※. 你能分清三角形的重心、垂心、外心、内心及其性质吗?
59. 立体几何中平行、垂直关系证明的思路清楚吗?
平行垂直的证明主要利用线面关系的转化:
线面平行的判定:
线面平行的性质:
三垂线定理(及逆定理):
线面垂直:
面面垂直:
60. 三类角的定义及求法
(1)异面直线所成的角θ , 0°<θ≤90°

(2)直线与平面所成的角θ,0°≤θ≤90°
(三垂线定理法:A∈α作或证AB⊥β于B,作BO⊥棱于O,连AO,则AO⊥棱l,∴∠AOB为所求 。)
三类角的求法:
①找出或作出有关的角 。
②证明其符合定义,并指出所求作的角 。
③计算大?。ń庵苯侨切危?或用余弦定理) 。
[练习]
(1)如图,OA为α的斜线OB为其在α内射影,OC为α内过O点任一直线 。
(2)如图,正四棱柱ABCD—A1B1C1D1中对角线BD1=8,BD1与侧面B1BCC1所成的为30° 。
①求BD1和底面ABCD所成的角;
②求异面直线BD1和AD所成的角;
③求二面角C1—BD1—B1的大小 。
(3)如图ABCD为菱形,∠DAB=60°,PD⊥面ABCD,且PD=AD,求面PAB与面PCD所成的锐二面角的大小 。

(∵AB∥DC,P为面PAB与面PCD的公共点 , 作PF∥AB,则PF为面PCD与面PAB的交线……)
61. 空间有几种距离?如何求距离?
点与点,点与线,点与面,线与线,线与面,面与面间距离 。
将空间距离转化为两点的距离,构造三角形 , 解三角形求线段的长(如:三垂线定理法,或者用等积转化法) 。
如:正方形ABCD—A1B1C1D1中,棱长为a,则:
(1)点C到面AB1C1的距离为___________;
(2)点B到面ACB1的距离为____________;
(3)直线A1D1到面AB1C1的距离为____________;
(4)面AB1C与面A1DC1的距离为____________;
(5)点B到直线A1C1的距离为_____________ 。

62. 你是否准确理解正棱柱、正棱锥的定义并掌握它们的性质?
正棱柱——底面为正多边形的直棱柱
正棱锥——底面是正多边形,顶点在底面的射影是底面的中心 。

正棱锥的计算集中在四个直角三角形中:
它们各包含哪些元素?
63. 球有哪些性质?
(2)球面上两点的距离是经过这两点的大圆的劣弧长 。为此,要找球心角!
(3)如图,θ为纬度角,它是线面成角;α为经度角,它是面面成角 。
(5)球内接长方体的对角线是球的直径 。正四面体的外接球半径R与内切球半径r之比为R:r=3:1 。
积为()
答案:A
64. 熟记下列公式了吗?
(2)直线方程:
65. 如何判断两直线平行、垂直?
66. 怎样判断直线l与圆C的位置关系?
圆心到直线的距离与圆的半径比较 。
直线与圆相交时 , 注意利用圆的“垂径定理” 。
67. 怎样判断直线与圆锥曲线的位置?
68. 分清圆锥曲线的定义
70. 在圆锥曲线与直线联立求解时,消元后得到的方程,要注意其二次项系数是否为零?△≥0的限制 。(求交点 , 弦长,中点,斜率,对称存在性问题都在△≥0下进行 。)
71. 会用定义求圆锥曲线的焦半径吗?
如:
通径是抛物线的所有焦点弦中最短者;以焦点弦为直径的圆与准线相切 。
72. 有关中点弦问题可考虑用“代点法” 。
答案:
73. 如何求解“对称”问题?
(1)证明曲线C:F(x,y)=0关于点M(a , b)成中心对称 , 设A(x,y)为曲线C上任意一点,设A'(x',y')为A关于点M的对称点 。
75. 求轨迹方程的常用方法有哪些?注意讨论范围 。
(直接法、定义法、转移法、参数法)
76. 对线性规划问题:作出可行域,作出以目标函数为截距的直线,在可行域内平移直线,求出目标函数的最值 。
谁有人教A版高一、高二数学知识点的总结一、集合与简易逻辑:
一、理解集合中的有关概念
(1)集合中元素的特征: 确定性 , 互异性 ,无序性。
(2)集合与元素的关系用符号=表示 。
(3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集。
(4)集合的表示法: 列举法 , 描述法 , 韦恩图。
(5)空集是指不含任何元素的集合 。
空集是任何集合的子集,是任何非空集合的真子集 。
二、函数
一、映射与函数:
(1)映射的概念: (2)一一映射:(3)函数的概念:
二、函数的三要素:
相同函数的判断方法:①对应法则 ;②定义域 (两点必须同时具备)
(1)函数解析式的求法:
①定义法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法:
①含参问题的定义域要分类讨论;
②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定 。
(3)函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;
②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域 。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域 。

三、函数的性质:
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言 。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法 。
应用:比较大?。っ鞑坏仁剑獠坏仁?。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系 。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;
f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数 。
判别方法:定义法, 图像法,复合函数法
应用:把函数值进行转化求解 。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期 。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式 。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律 。
常见图像变化规律:(注意平移变化能够用向量的语言解释 , 和按向量平移联系起来思考)
平移变换 y=f(x)→y=f(x+a),y=f(x)+b
注意:(?。┯邢凳?要先提取系数 。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象 。
(ⅱ)会结合向量的平移,理解按照向量 (m , n)平移的意义 。
对称变换 y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x) ,关于x轴对称
y=f(x)→y=f|x|,把x轴上方的图象保留 , x轴下方的图象关于x轴对称
y=f(x)→y=|f(x)|把y轴右边的图象保留 , 然后将y轴右边部分关于y轴对称 。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换 。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;
五、反函数:
(1)定义:
(2)函数存在反函数的条件:
(3)互为反函数的定义域与值域的关系:
(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域) 。
(5)互为反函数的图象间的关系:
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数 。
七、常用的初等函数:
(1)一元一次函数:
(2)一元二次函数:
一般式
两点式
顶点式
二次函数求最值问题:首先要采用配方法,化为一般式 , 
有三个类型题型:
(1)顶点固定,区间也固定 。如:
(2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外 。
(3)顶点固定,区间变动,这时要讨论区间中的参数.
等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根
注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况 。
(3)反比例函数:
(4)指数函数:
指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图 。
(5)对数函数:
对数函数:y= (a>o,a≠1) 图象恒过点(1,0) , 单调性与a的值有关 , 在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图 。
注意:
(1)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数 , 若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较 。
八、导 数
1.求导法则:
(c)/=0 这里c是常数 。即常数的导数值为0 。
(xn)/=nxn-1 特别地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x)
2.导数的几何物理意义:
k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率 。
V=s/(t) 表示即时速度 。a=v/(t) 表示加速度 。
3.导数的应用:
①求切线的斜率 。
②导数与函数的单调性的关系
已知 (1)分析 的定义域;(2)求导数 (3)解不等式  , 解集在定义域内的部分为增区间(4)解不等式,解集在定义域内的部分为减区间 。
我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性 。以下以增函数为例作简单的分析,前提条件都是函数 在某个区间内可导 。
③求极值、求最值 。
注意:极值≠最值 。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个 。最小值为极小值和f(a) 、f(b)中最小的一个 。
f/(x0)=0不能得到当x=x0时,函数有极值 。
但是,当x=x0时,函数有极值 f/(x0)=0
判断极值 , 还需结合函数的单调性说明 。
4.导数的常规问题:
(1)刻画函数(比初等方法精确细微);
(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型 。
2.关于函数特征 , 最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便 。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意 。
九、不等式
一、不等式的基本性质:
注意:(1)特值法是判断不等式命题是否成立的一种方法 , 此法尤其适用于不成立的命题 。
(2)注意课本上的几个性质,另外需要特别注意:
①若ab>0,则。即不等式两边同号时,不等式两边取倒数 , 不等号方向要改变 。
②如果对不等式两边同时乘以一个代数式,要注意它的正负号 , 如果正负号未定,要注意分类讨论 。
③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小 。
④中介值法:先把要比较的代数式与“0”比,与“1”比 , 然后再比较它们的大小
二、均值不等式:两个数的算术平均数不小于它们的几何平均数 。
基本应用:①放缩 , 变形;
②求函数最值:注意:①一正二定三相等;②积定和最?。?和定积最大 。
常用的方法为:拆、凑、平方;
三、绝对值不等式:
注意:上述等号“=”成立的条件;
四、常用的基本不等式:
五、证明不等式常用方法:
(1)比较法:作差比较:
作差比较的步骤:
⑴作差:对要比较大小的两个数(或式)作差 。
⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和 。
⑶判断差的符号:结合变形的结果及题设条件判断差的符号 。
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小 。
(2)综合法:由因导果 。
(3)分析法:执果索因 。基本步骤:要证……只需证……,只需证……
(4)反证法:正难则反 。
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的 。
放缩法的方法有:
⑴添加或舍去一些项,
⑵将分子或分母放大(或缩?。?
⑶利用基本不等式,
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元 。
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
十、不等式的解法:
(1)一元二次不等式: 一元二次不等式二次项系数小于零的 , 同解变形为二次项系数大于零;注:要对 进行讨论:
(2)绝对值不等式:若,则 ; ;
注意:
(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:
⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;
(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值 。
(3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解 。
(4)分式不等式的解法:通解变形为整式不等式;
(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集 , 即是这个不等式组的解集 , 在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分 。
(6)解含有参数的不等式:
解含参数的不等式时 , 首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:
①不等式两端乘除一个含参数的式子时 , 则需讨论这个式子的正、负、零性.
②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.
③在解含有字母的一元二次不等式时 , 需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要讨论 。
十一、数列
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上 , 突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明 , 值得注意的是,若给出一个数列的前 项和  , 则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算 , 是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题 , 是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整
体思想求解.
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列{an}的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时 , an是关于n的一次式;当d=0时 , an是一个常数 。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d≠0时 , Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式 。
12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列 。
15、等差数列{an}中,若m+n=p+q,则
16、等比数列{an}中,若m+n=p+q,则
17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列 。
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列 。
19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列 。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列 。
21、等比数列{an}的任意等距离的项构成的数列仍为等比数列 。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
24、{an}为等差数列,则 (c>0)是等比数列 。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列 。
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等 。关键是找数列的通项结构 。
26、分组法求数列的和:如an=2n+3n
27、错位相减法求和:如an=(2n-1)2n
28、裂项法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求数列{an}的最大、最小项的方法:
① an+1-an=…… 如an= -2n2+29n-3
② an=f(n) 研究函数f(n)的增减性
31、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解:
(1)当 >0,d<0时,满足 的项数m使得 取最大值.
(2)当 <0,d>0时,满足 的项数m使得 取最小值 。
在解含绝对值的数列最值问题时,注意转化思想的应用 。
十二、平面向量
1.基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量 。
2. 加法与减法的代数运算:
(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).
向量加法与减法的几何表示:平行四边形法则、三角形法则 。
向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律);
3.实数与向量的积:实数 与向量 的积是一个向量 。
(1)| |=| |·| |;
(2) 当 a>0时,与a的方向相同;当a<0时 ,  与a的方向相反;当 a=0时,a=0.
两个向量共线的充要条件:
(1) 向量b与非零向量 共线的充要条件是有且仅有一个实数,使得b= .
(2) 若 =( ),b=( )则 ‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得 = e1+ e2.
4.P分有向线段 所成的比:
设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 =  ,  叫做点P分有向线段 所成的比 。
当点P在线段 上时 ,  >0;当点P在线段 或 的延长线上时,<0;
分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1),中点坐标公式: .
5. 向量的数量积:
(1).向量的夹角:
已知两个非零向量 与b , 作 = , =b,则∠AOB= ( )叫做向量 与b的夹角 。
(2).两个向量的数量积:
已知两个非零向量 与b , 它们的夹角为 ,则 ·b=| |·|b|cos .
其中|b|cos 称为向量b在 方向上的投影.
(3).向量的数量积的性质:
若 =( ),b=( )则e· = ·e=| |cos (e为单位向量);
⊥b ·b=0 ( ,b为非零向量);| |= ;
cos = = .
(4) .向量的数量积的运算律:
·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c.
6.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理 , 计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等 。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点 。
十三、立体几何
1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题 。
能够用斜二测法作图 。
2.空间两条直线的位置关系:平行、相交、异面的概念;
会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法 。
3.直线与平面
①位置关系:平行、直线在平面内、直线与平面相交 。
②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据 。
③直线与平面垂直的证明方法有哪些?
④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900}
⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线.
4.平面与平面
(1)位置关系:平行、相交,(垂直是相交的一种特殊情况)
(2)掌握平面与平面平行的证明方法和性质 。
(3)掌握平面与平面垂直的证明方法和性质定理 。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直 。
(4)两平面间的距离问题→点到面的距离问题→
(5)二面角 。二面角的平面交的作法及求法:
①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形;
②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形 。
③射影面积法 , 一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法?